Versor - définition. Qu'est-ce que Versor
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Versor - définition

QUATERNION OF NORM ONE (A UNIT QUATERNION), WHOSE MULTIPLICATION GROUP IS ISOMORPHIC TO SU(2)
Unit quaternion; Versors; Hyperbolic versor

Versor         
·noun The turning factor of a quaternion.
Versor         
In mathematics, a versor is a quaternion of norm one (a unit quaternion). The word is derived from Latin versare = "to turn" with the suffix -or forming a noun from the verb (i.
verso         
  • [[Grandes Heures of Anne of Brittany]], f. 189v-190r
  • vertical Chinese, vertical Japanese]], Arabic, or Hebrew). In this picture, the recto page shown is of the following page in a book and hence comes next to the verso of the previous page.
"FRONT" AND "BACK" SIDES OF A LEAF OF PAPER
Recto-verso drawing; Verso; Recto-verso; Recto-Verso; Recto verso; Recto Verso; Rectoverso; RectoVerso; Recto; Leaf (books); Recto and Verso; Recto pages; Verso and recto
['v?:s??]
¦ noun (plural versos)
1. a left-hand page of an open book, or the back of a loose document. Contrasted with recto.
2. the reverse of something such as a coin or painting.
Origin
C19: from L. verso (folio) 'on the turned (leaf)'.

Wikipédia

Versor

In mathematics, a versor is a quaternion of norm one (a unit quaternion). The word is derived from Latin versare = "to turn" with the suffix -or forming a noun from the verb (i.e. versor = "the turner"). It was introduced by William Rowan Hamilton in the context of his quaternion theory.

Each versor has the form

q = exp ( a r ) = cos a + r sin a , r 2 = 1 , a [ 0 , π ] , {\displaystyle q=\exp(a\mathbf {r} )=\cos a+\mathbf {r} \sin a,\quad \mathbf {r} ^{2}=-1,\quad a\in [0,\pi ],}

where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then q = r {\displaystyle q=\mathbf {r} } , and the resulting unit vector is termed a right versor.

The collection of versors with quaternion multiplication forms a group, and the set of versors is a 3-sphere in the 4-dimensional quaternion algebra.